10/24/2020 Dotzel: The EDISON Multiprocessor Language and it's port to OpenVMS.

The Modulalor Technical Publication - &
Modula-% and Oberon-2 Programming

The ModulaTor

Oberon-2 and Modula-2 Technical Publication

The ModulaTor
Erlangen's First Independent Modula-2 3Journal! Nr. 5/3Jun-1991

The EDISON Multiprocessor Language
by Guenter Dotzel, ModulaWare GmbH.

Edison is a minimalistic, block-structured, modular, real-time, multiprocessor language. It
was developed in 1980 by Per Brinch Hansen of the University of Southern California,

Los Angeles, CA as a successor of Pascal and Modula(-1). For more information see his
publication (a) Edison - a Multiprocessor Language, (b) The Design of Edison, and (c)
Edison Programs in Software, Practice & Experience, Vol. 11, p325-361 (1981), John

Wiley & Sons.

Edison did not yet get much attention in the programmers community. It's the smallest
multiprocessing language I know. It's definition including syntax summary and many
examples takes only 35 pages. Like Modula, it doesn't include I/O-statements. Also
Edison omits all unsafe features of Pascal-like languages namely pointers and variant
records. Further omitted are subranges, files, unnamed (anonymous) types, goto-, case-
and with-statement. Edison features only one loop construct, the while-loop which has
an else-clause.

The only extensions are array- and record-constructors, procedural parameters,
arbitrary length sets and retyped factors for system programming. Last but not least, for
multiprocessor programming, Edison includes the synchronizing statement when ... do

. end and the concurrent statement cobegin ... also ... end. To show that Edison is
powerful enough for most programming applications, Per Brinch Hansen wrote the
Edison compiler, a single user operating system including file system and utility
programs, an assembler (called Alva), a text editor and a text formatter in Edison.

Question: Why yet another language? Why EDISON?

Answer: Safety in programming of mission critical systems!

Safety in programming can be guaranteed only when (a) writing programs in a language

like Edison which is well suited for verification and (b) by using only verified tools (Edison
compiler). It is important to note, that verification is the only goal when security is a
concern. If there exists any language with a complete and exact (formal) static as well as
semantic definition, it is indeed possible to produce a validation suite (a large set of
testing programs). But like testing, validation can only show the absense of errors but

does not proof correctness.

How can safety be guaranteed with Edison?

1. The Edison language is small. 2. The exact definition of Edison's syntax and
semantics is small. 3. Since the Edison compiler is written in Edison and generates code
for an abstract machine (so-called e-code, which was designed to be ideal for the
execution of Edison programs), the compiler itself is small. 4. Compiling an Edison
program is equivalent to the transformation from Edison source code to e-code. 5. The
correctness of the transformation process by compilation can be guaranteed by verifying

https://www.modulaware.com/mdIt11.htm 1/6

10/24/2020 Dotzel: The EDISON Multiprocessor Language and it's port to OpenVMS.

the compiler. 5. So it can easily be proved that the compiler compiles itself correctly to
e-code. 6. The e-code of the compiler can be executed on any existing machine which is
able to run an e-code-interpreter. 7. An e-code-interpreter is a small program with (7a) a
formal specification in Edison (the correctness of this specification can be proved) and
(7b) an interpreter program written in a portable assembly language called Alva. 8. The
equivalence of 7a and 7b can be proved. 9. The Alva assembler is written in Edison. 180.

To port any Edison program to a new machine, Alva has to be adapted to generate the

codes and instruction format of the target machine's architecture. The correctness of this
adaption can be proved. 11. The correctness of the transformation from Alva into the
native code of the target machine can be proved.

EDISON Example: The producer/consumer relation

The example listed below is a complete compilation unit. All exported objects have an
asterisk as prefix, importation into modules is automatic. All reserved words (keywords)
are printed in bold. Comments are enclosed in quotes. The procedure main which is
parameterized with a read- and a write-procedure contains two local modules

semaphores and putget. Both modules have a body (initialisation part) which is executed
when procedure main is called. Furthermore main declares two procedures producer

and consumer which are going to be instantiated as concurrent processes in the body of
main.

proc main (proc read (var ch: char); proc write (ch: char))

module "semaphores"
*record semaphore (value: int)

*proc wait(var s: semaphore)

begin
when s.value > @ do
s.value := s.value-1
end
end "wait"

*proc signal(var s: semaphore)
begin
when true do
s.value := s.value+l
end
end "signal"

*proc newsem(var s: semaphore; n: int)
begin

s.value :=n
end "newsem"

begin skip end "semaphores"

module "putget"
const n=10 "slots"
array table [1:n](char)
var ring: table;
head, tail: int;
full, empty: semaphore

*proc put(c: char)

begin
wait(empty);
ring[tail]:=c;
tail := tail mod n+1;
signal(full)

end "put"

*proc get(var c: char)

https://www.modulaware.com/mdIt11.htm

2/6

10/24/2020 Dotzel: The EDISON Multiprocessor Language and it's port to OpenVMS.

begin
wait(full);
c := ring[head];
head := head mod n+1;
signal(empty)
end "get"

begin
head:=1;
tail:=1;
newsem(full,0);
newsem(empty,n)
end "putget"

proc producer
var x: char
begin read(x);
while x<>"'."' do
put(x); read(x)
end; put(x)
end "producer"

proc consumer
var y: char
begin get(y);
while y<>'."' do
write(y); get(y)
end; write(y)
end "consumer"

begin
cobegin 1 do producer
also 2 do consumer
end "cobegin"

end "main"

Edison program execution, compilation and self-compilation:

To illustrate, how the interpreter executes a program, we need four symbols A, B, C, I. A
is program input, B is an e-code module, C is program output and I is the e-code
interpreter (see illustration below). 1. To execute an Edison program, one executes it's
e-code B which possibly reads A and produces C. 2. For compilation, A is an Edison

source file, B is the e-code of the Edison-compiler and C is the e-code of A. 3. For
self-compilation A is the source of the Edison compiler, B is it's e-code which is
reproduced in C.

Fig. ©: How Elmar Baumgart, 22 years old, visualizes an interpreter

More about the Edison-future at ModulaWare

https://www.modulaware.com/mdIt11.htm 3/6

10/24/2020 Dotzel: The EDISON Multiprocessor Language and it's port to OpenVMS.

Edison will be available for a wide range of todays home- and personal computers,
workstations, mini- and mainframes. The initial target machine is VAX/VMS (because it's
the development platform) and INMOS Transputer T800 and T9000 (H1). The system is

highly portable, because it is code is compatible across all 32 Bit architectures without
recompilation. This is accomplished by not generating native machine code but e-code.
E-code can be moved to other machines and operating systems by re-writing the
interpreter. The interpreter is easily ported because it doesn't contain operating system
specific code. This is due to the fact, that neither files nor any other I/0-mechanisms are
part of the Edison language. The e-code contains a 32-bit byte-stamp, which tells the
interpreter how the binary bytes are alocated in a 32-bit word. Furthermore, since the
e-code contains information about the binary floating point number data format either
ISO, IEEE-754-1985 (single and double) or VAX (single, double and g floating), the
interpreter is able to do the necessary format conversions before executing the e-code.

Of course, interpetative program execution is 2 to 10 times slower than native code. But
with the advent of very fast processors such as the new Hl-Transputer (150 MIPS, 25
MFLOPS, 80 MHz links, due to July, 1991) this fact can be tolerated for most
applications not only for educational purposes. An Edison program on the H1l would run
faster than a native-code compiled program on todays 30 MIPS RISC-workstation.

Implementation status trace

1982: Licensed the compiler and wrote some Edison programs (I gave up in favour of
RT-11 (and later SHAREplus) operating system on PDP-11 because program

development under the Edison operating system was too time consuming and also the
system and the language was incompatible to everything). Dec-1990: Wrote a Modula-2
tool to be able to read source and data files from Edison's file system on the
PDP-11/RT-11, copied the source files to VMS. Mar-1991: Studied the Edison language
design issues and the compiler sources. Translated the Edison source code with a
programmable editor partly automatically to Modula-2. Elmar, a new employee of
ModulalWare took over the Edison project and for bootstrapping purposes he re-wrote
the Edison compiler in Modula-2 within two weeks. The compiler has 5100 lines of
Modula-2 source code. ModulaWare's Modula-2 compiler MVR V3.09 was used for
compilation; this versions allows a set size of up-to 128 elements.

Apr-1991: The e-code interpreter was re-written from Edison to Modula-2. The Edison
language was extended by the elementary data types REAL, LONGREAL, COMPLEX,

LONGCOMPLEX and associated operations. Also generic constant real numbers,

so-called RR-types (as in ISO-Modula-2) have been added. The Edison procedural

program parameters were extended by the complete set of the ISO-Modula-2 standard
library data types and procedures (from the 4th Interim Working Draft, dated May-1991).
The Edison compiler (4966 lines) compiles itself to e-code within 40 minutes on a slow
microVAXII (about 1 MIPS, ©.3 MFLOPS).

Jun-1991 First benchmarks, using the portable e-code interpreter written in
ISO-Modula-2 (less than 1000 source lines): the following programs written in Edison
were compared to their equivalent written in Modula-2 using MVR V3.13 with the
/NOcheck compilation option.

(A) the Ackermann-function runs 11 times slower,

(B) the FFT-algorithm using single precision reals runs 23 times slower.

LECTOR/PS dw2:edison.dw2 10-Jul-1991 \251 1991 Guenter Dotzel.

Scanner-Syntax:

letter al | lbl | |C| | |d| | Iel | I_FI | lgl | |h| | |i| | |J| |
|k| | |l| | lml | |n| | |o| | Ipl I |q| | |r| | |S| | |t| |
lul | |V| | IWI | |X| | Iyl | IZI

digit: l@l | |1| | I2l | |3| | |4| | |5| | |6| I |7| | |8| | |9|

https://www.modulaware.com/mdIt11.htm 4/6

10/24/2020 Dotzel: The EDISON Multiprocessor Language and it's port to OpenVMS.

apostrophy: '"'
special_character: """ | (" |)" | tRU et], -t o e
|<| | |=| | |>| | |[| | |]| |] "

graphic_symbol: letter | digit | special_character | apostrophy | space
comment: { letter | digit | special character | space | new_line_character }
separator: space | new_line character | '"' comment
name: letter { letter | digit | '_' }

numeral: digit { digit }

Parser-Syntax:

type_name: name
constant_name: name
procedure_name: name
variable_name: name
field_name: name
control_symbol: ‘char' '(' numeral ')’
constant_symbol: numeral | character_symbol | constant_name
character_symbol: graphic_symbol | control symbol
constant_declaration: constant_name '=' constant_symbol
constant_declaration_list: 'const' constant_declaration { ';
enumeration_symbol: constant_name
enumeration_symbol_list: enumeration_symbol { ',' enumeration_symbol }
enumeration_type: 'enum' type_name '(' enumeration_symbol list ')’
record_type: 'record’' type_name '(' field_list ')’
field_list: variable_list
range_symbol: constant_symbol constant_symbol
array_type: 'array' type_name '[' range_symbol ']' '(' element_type ')’
element_type: type_name
set_type: 'set' type_name '(' base_type ')’
base_type: type_name
type_declaration: enumeration_type | record_type | array_type | set_type
variable_group: variable name { ',' variable name } ':' type_name
variable_list: variable_group { ';' variable_group }
variable declaration_list: 'var' variable_list
parameter group: ['var'] variable group | proc_heading
parameter_list: parameter_group { ';' parameter_group }
procedure_heading: 'proc' procedure_name ['(' parameter_list ')'] [':
procedure_body: { declaration } 'begin' statement_list 'end’
complete_procedure: procedure_heading procedure_body
preprocedure: 'pre' procedure_heading
postprocedure: 'post' complete_procedure
library_procedure: 'lib' procedure_heading '[' expression ']’
procedure_declaration: complete procedure | preprocedure | postprocedure | library_ procedure
module_declaration: 'module' { ['*'] declaration } 'begin' statement_list 'end’
declaration: constant_declaration_list | type_declaration |

variable declaration_list | proc_declaration | module_declaration
function_variable: 'val' procedure_name
field_selector: '.' field_name
indexed_selector: '[' expression ']’
type_transfer: ':' type_name
variable symbol: variable name [type transfer] | function_variable | variable_symbol selector
selector: field selector | indexed selector | type transfer
constructor: type name ['(' expression_list ')'] [type_transfer]
expression_list: expression { ',' expression }
factor: constant_symbol | variable symbol | constructor | procedure call |

"(' expression ')' | 'not' factor
multiplying operator: '*' | 'div' | 'mod' | 'and'
term: factor { multiplying operator factor }
adding_operator: '+' | '-' | 'or'
simple_expression: [sign_operator] term { adding_operator term }

constant_declaration }

type_name]

relational_operator: '=' | '<>' | ‘<" | '<=" | '>" | '>=" | 'in
expression: simple_expression [relational_operator simple_expression] [type_transfer]
assignment_statement: variable_symbol ':=' expression

argument_list: expression { ',' expression }

https://www.modulaware.com/mdIt11.htm 5/6

10/24/2020 Dotzel: The EDISON Multiprocessor Language and it's port to OpenVMS.

procedure_call: procedure_name { '(' argument_list ')']

conditional statement : expression 'do' statement_list

conditional statement_list: conditional_statement { 'else' conditional_ statement }

if_statement: 'if' conditional_statement_list 'end’

while statement: 'while' conditional_statement_list 'end’

when_statement: 'when' conditional_statement_list ‘'end'’

process_statement: constant_symbol 'do' statement_list

process_statement_list: process_statement { 'also' process_statement }

concurrent_statement: 'cobegin' process_statement_list 'end'

statement: 'skip' | assignment_statement | procedure_call | if_statement |
while statement | when_statement | concurrent_statement

statement_list: statement { ';' statement }

program: { initial_declaration } complete_procedure

initial declaration: constant_declaration list | type declaration

IMPRESSUM: The ModulaTor is an unrefereed journal. Technical papers are to be taken as working papers and personal rather than organizational statements.
Items are printed at the discretion of the Editor based upon his judgement on the interest and relevancy to the readership. Letters, announcements, and other items
of professional interest are selected on the same basis. Office of publication: The Editor of The ModulaTor is Guenter Dotzel; he can be reached by tel/fax:

[removed due to abuse] or by mailto:[email deleted due to spam]

| “Open to Any Browser...

ModulaWare home page The ModulaTor download |

Webdesign by www.otolo.com/webworx, 14-Jul-1998

https://www.modulaware.com/mdIt11.htm 6/6

